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these order-conditions, proposed method of eighth-order with five-stage has been derived. The zero stability of
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results have clearly shown the advantage and the efficiency of the new method and agree well with analytical

solutions due to the fact that the proposed integrators are zero stable, more efficient and accurate integrators.
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1 Introduction

Differential equations (DEs); ordinary or partial; are significant tools for mathematical models
in applications of science, economics and engineering. High-order differential equation arises in
many fields of science and engineering such as nonlinear optics and quantum mechanics. Eighth-
order differential equations govern physics of some hydrodynamic stability problems (Wazwaz,
2002). The approximated and numerical solutions for ordinary differential equations (ODEs) are
very important in scientific computation, as they are widely used to model real world problems.
The derivation of solutions of the nonlinear problems by analytical techniques is often rather diffi-
cult. Various approximated, analytical and numerical methods have been proposed to solve such
problems (Abbasbandy & Shirzadi, 2008). When this instability starts as an overst ability, it is
modelled by an eighth-order ODE. Furthermore, Mechee & Kadhim (2016), Mechee & Kadhim
(2016), Mechee (2019), Mechee & Mshachal (2019) and Reddy (2017) have derived numerical
methods of RK-type for solving classes of ODEs of third-, fourth-, fifth-, sixth- and seventh-
order respectively. However, to improve the computational efficiency of the indirect numerical
methods for solving class of eighth-order ODEs, the indirect numerical methods improved to be
direct, more efficient and accurate methods. Using Taylor expansion approach, we have derived
the algebraic equations of the order-conditions for the proposed RKM integrators up to the
tenth-order. Based on these order-conditions, RKM method of fifth- and eighth-order has been
derived. The novelty of this work is the generalization RK, RKN, RKD, RKT, RKFD and RKM
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methods for solving the classes of order less then eighth-order ODEs. Numerical implementa-
tions using Maple and MATLAB show that the numerical solutions of proposed integrator agree
well with analytical solution due to the fact the proposed integrator is efficient and accurate
and has less computational time comparing with indirect methods. The are several applications
of seventh-order ODEs such that KdV, which is a nonlinear PDE, and the another application
is nonlinear dispersive equations, which include several models arising in the study of differ-
ent physical phenomena. Ray & Gupta (2017) has studied an efficient numerical solution for
seventh-order DEs while Faires & Burden (2003) has proposed method based on the Legendre
wavelets to solve sKdV. In this paper, a class of eighth-order ODEs has been studied and direct
explicit method of RK-type for solving this class has been derived.

2 Preliminary

Here, we give the following definition for general class of quasi linear eighth-order ODE as the
follows:

2.1 Class of Eighth-Order Ordinary Differential Equations

In this study, we concerned with class of eighth-order ODEs with no appearance for the deriva-
tives up to seventh-order. It can be written in the following form

y(8)(t) = f(t, y(t)); t ≥ t0 (1)

subject to initial condition: y(t0) = αi; i = 0, 1, . . . , 7.
where f : R× RN → RN and y(t) = [y1(t), y2(t), . . . , yN (t)].
Knowing that, f is vector of independent variables of N components of the system of ODE

(1). To convert the function f(t, y(t)) which depends on two variables t and y(t) to a function
which depends only on dependent variable y(t), using high dimension we can work in N+1
dimension using the assumption yN+1(t) = t, then Equation (1) can be simplified to Equation
(2)

v(8)(t) = h(v(t)) (2)

Using the following consideration

v(t) =



y1(t)
y2(t)
· · ·
· · ·
· · ·

yN (t)
t,


h(v(t)) =



f1(v1, v2, . . . , vN+1)
f2(v1, w2, . . . , vN+1)
f3(v1, v2, . . . , vN+1)

· · ·
· · ·
· · ·

fN (v1, v2, . . . , vN+1)
0


subject to the initial condition y

′
(t0) = αi; i = 0, 1, . . . , 7 where αi = [α1, α2, α3, . . . , αN , t0]

Some of engineers and scientists used to solve Equation (1) or (2) by multistep method
(Lmm). Mostly, they used to solve ODEs of higher-order by converting them to equivalent
system of first-order ODEs and they solved using a classical RK method (Jackiewicz et al., 2003).
However, it would be more efficient if eighth-order ODE can be solved using proposed direct
RKM method. In this paper, we are concerned with direct explicit RKM integrators for solving
class of eighth-order ODEs. Using Taylor series expansion approach, we have obtained the
order-conditions of the proposed methods. Consequently, we have derived two RKM integrators
based on these algebraic order-conditions.
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3 Proposed RKM Method

The formula of proposed explicit RKM integrator with s-stage for solving eighth-order ODE (1)
written as following

yn+1 = yn + hy
′
n +

h2

2
y
′′
n +

h3

6
y
′′′
n +

h4

24
y
′′′′
n +

h5

120
y
′′′′′
n +

h6

720
y
′′′′′′
n +

h7

5040
y
′′′′′′
n + h8

s∑
i=1

biki, (3)

y
′
n+1 = y

′
n + hy

′′
n + h2

2 y
′′′
n + h3

6 y
′′′′
n + h4

24y
′′′′′
n + h5

120y
′′′′′′
n + h6

720y
′′′′′′
n + h7

∑s
i=1 b

′
iki, (4)

y
′′
n+1 = y

′′
n + hy

′′′
n +

h2

2
y
′′′′
n +

h3

6
y
′′′′′
n +

h4

12
y
′′′′′′
n +

h5

120
y
′′′′′′
n + h6

s∑
i=1

b
′′
i ki, (5)

y′′′n+1 = y′′′n + hy
′′′′
n +

h2

2
y
′′′′′
n +

h3

6
y
′′′′′′
n +

h4

12
y
′′′′′′
n + h5

s∑
i=1

b
′′′
i ki, (6)

y′′′′n+1 = y′′′′n + hy
′′′′′
n +

h2

2
y
′′′′′′
n +

h3

6
y
′′′′′′
n + h4

s∑
i=1

b
′′′′
i ki, (7)

y′′′′′n+1 = y′′′′′n + hy
′′′′′′
n +

h2

2
y
′′′′′′
n + h3

s∑
i=1

b
′′′′′
i ki, (8)

y′′′′′′n+1 = y′′′′′′n + hy
′′′′′′
n + h2

s∑
i=1

b
′′′′′′
i ki, (9)

y′′′′′′′n+1 = y′′′′′′′n + h
s∑

i=1

b
′′′′′′′
i ki, (10)

and

k1 = f(tn, yn), (11)

ki = f(tn + cih, yn + hciy
′
n +

h2

2
c2i y

′′
n +

h3

6
c3i y

′′′
n +

h4

24
c4i y

′′′′
n +

h5

120
c5i y

′′′′′
n

+
h6

720
c6i y

′′′′′′
n +

h7

5040
c7i y

′′′′′′′
n + h8

i−1∑
j=1

aijkj). (12)

The parameters of RKM integrator are aij , ci, bi, b
′
i, b

′′
i , b

′′′
i , b

′′′′
i , b

′′′′′
i , b

′′′′′′
i , b

′′′′′′′
i and b

′′′′′′′′
i for i, j =

1, 2, · · · , s are real and h is the step-size. RKM is an explicit integrator if aij = 0 for i < j and
otherwise RKM is implicit integrator. The coefficients of RKM method have been expressed in
Butcher table as in Table 1 The order-conditions of RKM integrators for solving seventh-order

C A

bT

b′T

b′′T

b′′′T

b′′′′T

b′′′′′T

b′′′′′′T

b′′′′′′′T

Table 1: Butcher Table of RKM method

ODEs have been derived by Mechee et al. (2016). In this study, using the same technique, we
have derived the algebraic equations of order-conditions of RKM methods for solving class of
eighth-order ODEs.
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3.1 The Order-Conditions Derivation of RKM Methods

The order-conditions of RKM integrators can be obtained from the direct expansion of the

local truncation error. RKM formulae in (3)-(12) can be expressed as follows y
(i)
n+1 = yn +

hω(i)(tn, yn); i = 0, 1, . . . , 6 where the increment functions are defined as the following

ω(tn, yn) = y(1)n +
h

2
y
′′
n +

h2

6
y
′′′
n +

h
3

24
w

′′′′
n +

h4

120
y
′′′′′
n +

h5

720
y
′′′′′′
n +

h6

5040
y
′′′′′′′
n + h7

s∑
i=1

biki,

ω(1)(tn, yn) = y(2)n +
h

2
y
′′′
n +

h2

6
y
′′′′
n +

h
3

24
y
′′′′′
n +

h4

120
y
′′′′′′
n +

h5

720
y
′′′′′′′
n + h6

s∑
i=1

b
′
ik

′
i,

ω(2)(tn, yn) = y(3)n +
h

2
y
′′′′
n +

h2

6
y
′′′′′
n +

h
3

24
y
′′′′′′
n +

h4

120
y
′′′′′′′
n + h5

s∑
i=1

b
′′
i k

′′
i ,

ω(3)(tn, yn) = y(4)n +
h

2
y
′′′′′
n +

h2

6
y
′′′′′′′
n +

h
3

24
y
′′′′′′
n + h4

s∑
i=1

b
′′′
i k

′′′
i ,

ω(4)(tn, yn) = y(5)n +
h

2
y
′′′′′′
n +

h2

6
y
′′′′′′′
n + h3

s∑
i=1

b
′′′′
i k

′′′′
i ,

ω(5)(tn, yn) = y(6)n +
h2

2
y
′′′′′′′
n + h2

s∑
i=1

b
′′′′′

k
′′′′′
i ,

ω(6)(tn, yn) = y(7)n + h
s∑

i=1

b
′′′′′′
i k

′′′′′′
i ,

ω(7)(tn, yn) =
s∑

i=1

b
′′′′′′
i k

′′′′′′
i ,

where, ki is defined as follow

k1 = f(tn, yn), (13)

ki = f(tn + cih, yn + hciy
′
n +

h2

2
c2i y

′′
n +

h3

6
c3i y

′′′
n +

h4

24
c4i y

′′′′
n +

h5

120
c5i y

′′′′′
n (14)

+
h6

720
c6i y

′′′′′′
n + h7

i−1∑
j=1

aijkj),

for i = 2, 3, ..., s. If ∆ represents Taylor series increment function and the local truncation errors
of the derivatives of the solution of order zero up to order seven can be obtained by substituting
the analytical solution y(t) of ODE (1) into the RKM increment function. This gives

τ
(i)
n+1 = h(ω(i) −∆(i))
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for i = 1, 2, . . . , 6 . These expressions have given in elementary differentials terms also Taylor
series increment can be expressed as follows

∆(0) = y
′
+

h

2
y
′′
+

h2

6
y
′′′
+

h3

24
y
′′′′

+
h4

120
y
′′′′′

+
h5

720
y
′′′′′′

+
h5

5040
y
′′′′′′′

+O(h7),

∆(1) = y
′
+

h

2
y
′′
+

h2

6
y
′′′
+

h3

24
y
′′′′

+
h4

120
y
′′′′′

+
h5

720
y
′′′′′′

+O(h6),

∆(2) = y
′′
+

h

2
y
′′′
+

h2

6
y
′′′′

+
h3

24
y
′′′′′

+
h4

120
y
′′′′′′

+O(h5),

∆(3) = y
′′′
+

h

2
y
′′′′

+
h2

6
y
′′′′′

+
h3

24
y
′′′′′′

+O(h4),

∆(4) = y
′′′′

+
h

2
y
′′′′′

+
h2

6
y
′′′′′′

+O(h3),

∆(5) = y
′′′′′

+
h

2
y
′′′′′′

+O(h2),

∆(6) = y
′′′′′′

+O(h),

∆(7) = O(1).

3.2 Order-Conditions

To determine the order-conditions of the numerical integrators indicated by equations (3)-(12),
RKM method formula is expanded using the approach of Taylor’s series expansion using Maple
software. Hence the following order-conditions are given

y :
∑

bi =
1

5040
,
∑

bici =
1

40320
,
∑

bic
2
i =

1

181440
,
∑

bic
3
i =

1

604800
, (15)

y
′
:
∑

b
′
i =

1

720
,
∑

b
′
ici =

1

5040
,
∑

b
′
ic

2
i =

1

20160

∑
b
′
ic

3
i =

1

60480

∑
b
′
ic

4
i =

1

151200
. (16)

y
′′
:
∑

b
′′
i =

1

720
,
∑

b
′′
i ci =

1

5040
,
∑

b
′′
i c

2
i =

1

20160
,
∑

b
′′
i c

3
i =

1

60480
,
∑

b
′′
i c

4
i =

1

151200
,

.
∑

b
′′
i c

5
i =

1

332640
. (17)

y
′′′
:
∑

b
′′′
i = 1

120 ,
∑

b
′′′
i ci =

1
720

∑
b
′′′
i c

2
i =

1
2520

∑
b
′′′
i c

3
i =

1
6720

∑
b
′′′
i c

4
i =

1
15120 ,

∑
b
′′′
i c

5
i =

1
30240 ,

.
∑

b
′′′
i c

6
i =

1

55440
. (18)

y
′′′′

:
∑

b
′′′′
i = 1

24 ,
∑

b
′′′′
i ci =

1
120 ,

∑
b
′′′′
i c2i =

1
360 ,

∑
b
′′′′
i c3i =

1
840 ,

∑
b
′′′′
i c4i =

1
1680 ,

∑
b
′′′′
i c5i =

1
3024 ,

.
∑

b
′′′′
i c6i =

1

5040
,
∑

b
′′′′
i c7i =

1

7920
. (19)

y
′′′′′

:
∑

b
′′′′′
i = 1

6 ,
∑

b
′′′′′
i ci =

1
24 ,

∑
b
′′′′′
i c2i =

1
60

∑
b
′′′′′
i c3i =

1
120 ,

∑
b
′′′′′
i c4i =

1
210 ,

∑
b
′′′′′
i c5i =

1
336 ,

.
∑

b
′′′′′
i c6i =

1

504
,
∑

b
′′′′′
i c7i =

1

720
,
∑

b
′′′′′
i c8i =

1

990
. (20)

y
′′′′′′

:
∑

b
′′′′′′
i = 1

2 ,
∑

b
′′′′′′
i ci =

1
6 ,
∑

b
′′′′′′
i c2i =

1
12 ,

∑
b
′′′′′′
i c3i =

1
20 ,

∑
b
′′′′′′
i c4i =

1
30 ,

∑
b
′′′′′′
i c5i =

1
42 ,
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.
∑

b
′′′′′′
i c6i =

1

56
,
∑

b
′′′′′′
i c7i =

1

72
,
∑

b
′′′′′′
i c8i =

1

90
,
∑

b
′′′′′′
i c9i =

1

110
, (21)

y
′′′′′′′

:
∑

b
′′′′′′′
i = 1,

∑
b
′′′′′′′
i ci =

1

2
,
∑

b
′′′′′′′
i c2i =

1

3
,
∑

b
′′′′′′′
i c3i =

1

4
,
∑

b
′′′′′′′
i c4i =

1

5
, b

′′′′′′′
i c5i =

1

6
,

.
∑

b
′′′′′′′
i c6i =

1

7
,
∑

b
′′′′′′′
i c7i =

1

8
,
∑

b
′′′′′′′
i c8i =

1

9
,
∑

b
′′′′′′′
i c9i =

1

10
,
∑

b
′′′′′′′
i c10i =

1

11
,

.

5,4∑
i=2,j=1

∑
j<i

b
′′′′′′′′
i aij =

1

120
,

5,4∑
i=2,j=1

∑
j<i

b
′′′′′′′
i ciaij =

1

144
,

5,4∑
i=3,j=2

∑
j<i

b
′′′′′′′
i aijcj =

1

720
,

.

5,4∑
i=2,j=1

∑
j<i

b
′′′′′′′
i aijc

2
i =

1

2520
,

5,4∑
i=2,j=1

∑
j<i

b
′′′′′′′
i c2jaij =

1

168
,

5,4∑
i=3,j=2

∑
j<i

b
′′′′′′′
i cjaijcj =

1

840
. (22)

3.3 Derivation of RKM Methods

To derive proposed RKM methods using the algebraic conditions (15)-(22) with the following as-

sumption bi =
(1−ci)

7

7! b
′′′′′′′
i , b

′
i =

(1−ci)
6

6! b
′′′′′′′
i , b

′′
i = (1−ci)

5

5! b
′′′′′′′
i , b

′′′
i = (1−ci)

4

4! b
′′′′′′′
i , b

′′′′
i = (1−ci)

3

3! b
′′′′′′′
i ,

b
′′′′′
i = (1−ci)

2

2! b
′′′′′′′
i , b

′′′′′′
i = (1− ci)b

′′′′′′′
i , for i = 1, . . . , s,

The parameters of RKM method ci, aij , bi, b
′
i, b

′′
i , b

′′′
i , b

′′′′
i , b

′′′′′
i and b

′′′′′′
i for i, j = 1, 2, . . . , s.

for Four-stage fifth-order and five-stage sixth-order RKM integrators have been evaluated and
the Butcher tableaus of these integrators are shown in the Table 2.

0 0 0 0 0 0

1
2

1
2

0 0 0 0

1 −4
21

− 10
√
21

21
727
252

+ 10
√

21
21

0 0 0

1
2
−

√
21
14

1
2

−449
2744

+ 45
√
21

392
36
343

−
√

21
28

0 0

1
2
+

√
21
14

5
686

− 169
√
21

1372
−181
2744

+ 555
√
21

2744
0 1

2
0

1
100800

1
1814400

0 13
1814400

+ 139
√
21

88905600
13

1814400
− 139

√
21

88905600

1
14400

11
129600

0 11
181440

+
√
21

75600
11

181440
−

√
21

75600

1
2400

1
10800

0 19
43200

+ 29
√
21

302400
19

43200
− 29

√
21

302400

1
480

1
1080

0 23
8640

+
√
21

1728
23

8640
−

√
21

1728

1
120

1
135

0 7
540

+
√
21

360
7

540
−

√
21

360

1
40

2
45

0 7
144

+ 7
√
21

144
7

144
− 7

√
21

144

1
20

8
45

0 49
360

+ 7
√
21

360
49
360

− 7
√
21

360

1
20

16
45

1
20

49
180

49
180

Table 2: The Butcher Tableau for the RKM Method of Four Stages and Fifth Order.
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4 Stability of the Method

4.1 Zero Stability of the Method

Definition 1. The method is said to be zero stable if it satisfied −1 < ξ ≤ 1. (Jackiewicz et al.,
2003)

Zero-stability is an important tool for proving the stability and convergence of linear multi-
step methods. We can rewrite the equations (3)-(12) as follows

Thus the characteristic polynomial is

ρ(ξ) = (ξ − 1)7. (23)

Hence, the method is zero-stable since the roots are ξ = 1, 1, 1, 1, 1, 1, 1, are less or equal to
one.

4.2 Absolute Stability of the Method

Definition 2. The method is said to be absolutely stable for a given roots if all the roots lies
within the unit circle (Jackiewicz et al., 2003).

Mechee et al. (2016) has studied the absolute stability for RKD method and compared the
stability regions for RKD and RKT methods, In the same way we have studied the absolute
stability for the RKM method and we apply this to the test problem

w(8) = −χ8w. (24)

Now, consider formulas Equations (3)-(12), which can be written for the test problem as follows

The stability function associated with this method is given by,

Θ(ξ,H) =| ξI −RH |,

where R(H) a rational function of H,H is a stability matrix the characteristic equation of which
can be written as

Θ(ξ,H) = λ0(H)ξ8+λ1(H)ξ7+λ2(H)ξ6+λ3(H)ξ5+λ4(H)ξ4+λ5(H)ξ3+λ6(H)ξ2+λ7(H)ξ+λ8(H).

5 Applications

In this section, we imply the proposed methods for solving four problems and their numerical
results introduced in Figure 1

Example 1. (Linear ODE)

y(8)(t) = y(t); 0 < t ≤ 1.

subject to ICs: y(i)(0) = (−1)i; i = 0, 1, . . . , 7.

The exact solution is y(t) = e−t

Example 2. (Linear ODE)

y(8)(t) = 256y(t); 0 < t ≤ 1.

subject to ICs: y(i)(0) = (−2)i; i = 0, 1, . . . , 7.

The exact solution is y(t) = e−2t
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Example 3. (Non Constant Coefficients ODE)

y(8)(t) = (1680− 13440t2 + 13440t4 − 3584t6 + 256t8)y(t); 0 < t ≤ 1.

subject to ICs: y(2i+1)(0) = 0; i = 0, 1, 3, y(0) = 1, y
′′
(0) = −2, y(4)(0) = 12, y(6)(0) = −120.

The exact solution is y(t) = et
2

Example 4. (Linear ODE)

y(8)(t) = y(t), 0 < t ≤ 1.

subject to ICs: y(2i+1)(0) = 0 for i = 0, 1, 2, 3 and y(2i)(0) = (−1)i for i = 0, 1, 2, 3

The exact solution is y(t) = cos(t).

Example 5. (Non Linear ODE)

y(8)(t) = − 5040

(1 + t)8
, 0 < t ≤ 1.

subject to ICs: y(0) = 0, y
′
(0) = 1, y

′′
(0) = −1, y

′′′
(0) = 2, y(4)(0) = −6, y(5)(0) = 24, y(6)(0) =

−120, y(7)(0) = 720.

The exact solution is y(t) = log(1 + t)

Figure 1: Comparisons on approximated solutions versus exact solutions for Problems (a) 1, (b) 2,
(c) 3, (d) 4, (e) 5 and (f) 6
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Example 6. (Linear ODE with Relatively Long Interval)

y(7)(t) = 0.0000001e−
t
10 , 0 < t ≤ 1.

subject to ICs: y(0) = 1, y(i)(0) = (−0.1)i; i = 1, 2, . . . , 6.

The exact solution is y(t) = e−
t
10

6 Conclusion

In this study, we have derived the algebraic equations of order-conditions for direct integrators
of RKM for class of eighth-order ODEs. The approach of the derivation of the proposd method
is based on Taylor expansion. The objective of this work is to establish direct explicit integrators
of RK type for solving class of eighth-order ODEs. For this purpose, we have generalized the
integrators RK, RKN, RKD, RKT and RKFD which are used for solving class of order less
than seventh-order. We have derived eighth-order with five-stage RKM method. Numerical
results using the proposed method have been compared with analytical solutions in figures 1-6
which show that the numerical results of the six test problems are more efficient and accurate as
well-known existing methods. The new integrates are more efficient in implementation as they
require less function evaluations.
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